Status of supersymmetric models with GAMBIT

Ben Farmer, Imperial College London *on behalf of the GAMBIT collaboration*

ALPS2019 - Fourth Alpine LHC Physics Summit

24 April 2019

1. Motivation

- No clear evidence of supersymmetry at LHC
 - \circ ...so set limits on SUSY models
- But, the general MSSM has many free parameters
 - \circ -> very difficult to explore thoroughly
- ATLAS and CMS have opted for a search strategy optimised around "simplified models";
 - simple SUSY-like models where one or two SUSY particles added, with certain assumptions about how they decay to SM particles. E.g.
- What might these searches miss?

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2019

ATLAS Preliminary
$\sqrt{s} = 13 \text{ TeV}$
Reference

	Model	S	ignatur	e ∫.	L dt [fb ⁻		Mass limit				Reference
S	$\tilde{q}\tilde{q},\tilde{q}\! ightarrow\!q\tilde{\chi}_{1}^{0}$	0 e, µ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 36.1	i [2x, 8x Degen.] i [1x, 8x Degen.]	0.43	0.9	1.55	m(∛10)<100 GeV m(ĝ)-m(∛10)=5 GeV	1712.02332 1711.03301
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	E_T^{miss}	36.1	i i		Forbidden	2.0 0.95-1.6	m($\tilde{\chi}_1^0)$ <200 GeV m($\tilde{\chi}_1^0)$ =900 GeV	1712.02332 1712.02332
/e Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 е, µ ее, µµ	4 jets 2 jets	E_T^{miss}	36.1 36.1				1.85 1.2	$m(\tilde{\chi}_{1}^{0}) < 800 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV}$	1706.03731 1805.11381
Iclusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ 3 e,μ	7-11 jets 4 jets	E_T^{miss}	36.1 36.1			0.98	1.8	m($ ilde{k}_1^0$) <400 GeV m($ ilde{g}$)-m($ ilde{\chi}_1^0$)=200 GeV	1708.02794 1706.03731
-	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	3 b 4 jets	$E_T^{\rm miss}$	79.8 36.1				1.25	.25 $m(\bar{\chi}_1^0) < 200 \text{ GeV}$ $m(\bar{g}) - m(\bar{\chi}_1^0) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 1706.03731
	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1 {\rightarrow} b\tilde{\chi}_1^0/t\tilde{\chi}_1^\pm$		Multiple Multiple Multiple		36.1 36.1 36.1	Fi Fi	orbidden Forbidden Forbidden	0.9 0.58-0.82 0.7	m(/	$\begin{array}{c} m(\tilde{k}_{1}^{0}){=}300~{\rm GeV},~BR(b\tilde{k}_{1}^{0}){=}1\\ m(\tilde{k}_{1}^{0}){=}300~{\rm GeV},~BR(b\tilde{k}_{1}^{0}){=}BR(\ell\tilde{k}_{1}^{\pm}){=}0.5\\ \tilde{k}_{1}^{0}){=}200~{\rm GeV},~m(\tilde{k}_{1}^{\pm}){=}300~{\rm GeV},~BR(\ell\tilde{k}_{1}^{\pm}){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
arks	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 <i>b</i>	$E_T^{\rm miss}$	139	Forbidder	0.23-0.48	C	.23-1.35	$\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	SUSY-2018-31 SUSY-2018-31
nbs	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$	0-2 e, µ (0-2 jets/1-2	$b E_T^{miss}$	36.1	1		1.0		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	1506.08616, 1709.04183, 1711.11520
en. t pr	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP		Multiple		36.1	1		0.48-0.84	m(\tilde{k}_1^0)=150 GeV, m(\tilde{k}_1^{\pm})-m(\tilde{k}_1^0)=5 GeV, $\tilde{t}_1 \approx \tilde{t}_L$	1709.04183, 1711.11520
rd g	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b v, \tilde{\tau}_1 \rightarrow \tau G$	$1 \tau + 1 e, \mu, \tau$	2 jets/1 b	E_T^{miss}	36.1	1			1.16	m(ī ₁)=800 GeV	1803.10178
~ O	$f_1f_1, f_1 \rightarrow c \chi_1^c / c \bar{c}, \bar{c} \rightarrow c \chi_1^c$	0 <i>e</i> , µ	2 c	E_T	36.1		0.46	0.85		$m(\tilde{t}_1, \tilde{c})=0 \text{ GeV}$ $m(\tilde{t}_1, \tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$	1805.01649
		0 e, µ	mono-jet	$E_T^{\rm miss}$	36.1	1	0.43			$m(\tilde{t}_1,\tilde{c})-m(\tilde{t}_1^0)=5 \text{ GeV}$	1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , <i>µ</i>	4 <i>b</i>	$E_T^{\rm miss}$	36.1	2		0.32-0.88		$m(\tilde{\chi}_1^0)=0 \text{ GeV}, m(\tilde{\iota}_1)-m(\tilde{\chi}_1^0)=180 \text{ GeV}$	1706.03986
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 36.1	$\frac{1}{1}/\tilde{\chi}_{2}^{0}$ $\frac{1}{1}/\tilde{\chi}_{2}^{0}$ 0.17		0.6		$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1403.5294, 1806.02293 1712.08119
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	$2 e, \mu$		E_T^{miss}	139	*± 1	0.42			$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2019-008
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	0-1 <i>e</i> , <i>µ</i>	2 b	E_T^{miss}	36.1	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$		0.68		$m(\tilde{\chi}_1^0)=0$	1812.09432
N Sol	$\tilde{\chi}_{\pm}^{+}\tilde{\chi}_{\pm}^{+}$ via $\ell_{L}/\tilde{\nu}$ $\tilde{\chi}_{\pm}^{\pm}\tilde{\chi}_{\pm}^{\pm}$ $\tilde{\chi}_{\pm}^{0}$ $\tilde{\chi}_{\pm}^{\pm}$ $\tilde{\chi}_{\pm}^{0}$ $\tilde{\chi}_{\pm$	2 e, µ		E_T^{miss}	139	1		1.0		$m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{k}_{1}^{T})+m(\tilde{k}_{1}^{\prime\prime}))$	ATLAS-CONF-2019-008
din	$\chi_1 \chi_1 / \chi_2, \chi_1 \rightarrow \tilde{\tau}_1 \nu(\tau \tilde{\nu}), \chi_2 \rightarrow \tilde{\tau}_1 \tau(\nu \tilde{\nu})$	27		L_T	36.1	$\frac{1}{\tilde{\chi}_{2}}$ 0.22		0.76	$m(\tilde{\chi}_{\perp}^{\pm})$ -n	$m(\chi_1)=0, m(\tau, \nu)=0.5(m(\chi_1)+m(\chi_1))$ $n(\chi_1^0)=100 \text{ GeV}, m(\tau, \nu)=0.5(m(\chi_1^\pm)+m(\chi_1^0))$	1708.07875
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} {\rightarrow} \ell \tilde{\chi}_1^0$	2 e, μ 2 e, μ	0 jets ≥ 1	E_T^{miss} E_T^{miss}	139 36.1	0.18		0.7		$m(\tilde{\ell}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	ATLAS-CONF-2019-008 1712.08119
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e, μ 4 e, μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 36.1	й 0.13-0.23 й	0.3	0.29-0.88		$BR(\tilde{\chi}^0_1 \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}^0_1 \rightarrow Z\tilde{G})=1$	1806.04030 1804.03602
ived	$Direct\tilde{\chi}_1^+\tilde{\chi}_1^-prod.,long-lived\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1	0.15	0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
l-gr	Stable g R-hadron		Multiple		36.1	1			2.0		1902.01636,1808.04095
Lor	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow ga \tilde{\chi}_{1}^{0}$		Multiple		36.1	{ [τ(g) =10 ns, 0.2 ns]			2.05	2.4 m($\tilde{\chi}_1^0$)=100 GeV	1710.04901,1808.04095
	LFV $pp \rightarrow \tilde{y}_{\tau} + X, \tilde{y}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	еµ,ет,µт			32	2			19	d'=0.11, d_12/(13/22)=0.07	1607.08079
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\gamma\gamma$	4 e,μ	0 jets	$E_T^{\rm miss}$	36.1	$\tilde{\lambda}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = [\lambda_{i33} \neq 0, \lambda_{124} \neq 0]$	0]	0.82	1.33	m(X ₁ ⁰)=100 GeV	1804.03602
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-	-5 large-R je	ets	36.1	$[m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100]$	GeV]		1.3 1.9	Large λ_{112}''	1804.03568
PV			Multiple		36.1	g [\mathcal{X}''_{112} =2e-4, 2e-5]		1.0	5 2.0	$m(\tilde{\chi}_1^0)=200$ GeV, bino-like	ATLAS-CONF-2018-003
Ц	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$		Multiple		36.1	ξ [λ ^{''} ₃₂₃ =2e-4, 1e-2]	C	0.55 1.0	5	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$t_1 t_1, t_1 \rightarrow bs$	2	2 jets + 2 b	,	36.7	[qq, bs]	0.42	0.61	0.4.1.45	DD/7 . I. //	1710.07171
	$i_1i_1, i_1 \rightarrow qt$	2 e,μ 1 μ	2 b DV		36.1 136	$\lambda_1 = [1e-10 < \lambda'_{23k} < 1e-8, 3]$	3e-10< λ'_{23k} <3e-9]	1.0	1.6	$BR(i_1 \rightarrow be/b\mu) > 20\%$ $BR(i_1 \rightarrow q\mu) = 100\%, \cos\theta_i = 1$	1/10.05544 ATLAS-CONF-2019-006
*Only	a selection of the available mas	s limits on r	new state	s or	1	-1			1	Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-012/fig_08.png

ATLAS SUSY Searches* - 95% CL Lower Limits

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made

 $\sqrt{s} = 13 \text{ TeV}$

ATLAS Preliminary

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-012/fig 08.png

How light could the electroweak sector of the MSSM still be?

• Limits from EW direct production pushing to TeV scale?

5

Ben Farmer, ALPS2019

2. Analysis

Light SUSY is alive!

Ben Farmer, ALPS2019

Theory: MSSM particle content

Slide credit: Anders Kvellestad

Name	\mathbf{Spin}	$\mathbf{P}_{\mathbf{R}}$	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	H^0_u H^0_d H^+_u H^d	h^0 H^0 A^0 H^{\pm}
squarks	0	-1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\text{same}) \\ (\text{same}) \\ \widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2$
sleptons	0	•	$\widetilde{e}_{L} \widetilde{e}_{R} \widetilde{\nu}_{e}$ $\widetilde{\mu}_{L} \widetilde{\mu}_{R} \widetilde{\nu}_{\mu}$ $\widetilde{\tau}_{L} \widetilde{\tau}_{R} \widetilde{\nu}_{\tau}$	(same) (same) $\widetilde{\tau}_1 \widetilde{\tau}_2 \widetilde{\nu}_{\tau}$
neutralinos	1/2	-1	$\widetilde{B}^0 \hspace{0.2cm} \widetilde{W}^0 \hspace{0.2cm} \widetilde{H}^0_u \hspace{0.2cm} \widetilde{H}^0_d$	$\widetilde{\chi}^0_1 \hspace{0.2cm} \widetilde{\chi}^0_2 \hspace{0.2cm} \widetilde{\chi}^0_3 \hspace{0.2cm} \widetilde{\chi}^0_4$
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	$\widetilde{\chi}_1^{\pm}$ $\widetilde{\chi}_2^{\pm}$
gluino	1/2	-1	\widetilde{g}	(same)

Ben Farmer,

"EWMSSM"

- Only electroweak sector of MSSM kept light
- Everything else decoupled
- 4 parameters: $M_1, M_2, \mu, \tan \beta$
 - Manageable! But still a lot of non-trivial physics beyond what simplified models can capture.
 - 6 new particles: 4 neutralinos + 2 charginos

Strategy

- Focus on 13 TeV searches
- Scan 4D EWMSSM parameter space
- At every point: Run MC simulations of 13 TeV searches
- Compute joint likelihood function for all searches

How? -> GAMBIT

GAMBIT

gambit.hepforge.org

12

The Global And Modular BSM Inference Tool

- An international community with 40+ collaborators (10 experiments, 14 major theory codes)
- A new software framework for global fits developed over the past six years

- First public code release in May 2017, arXiv:1705.07908 (gambit.hepforge.org)
- So far 7 physics studies:
 - arXiv:1705.07917, arXiv:1705.07935 arXiv:1705.07931, arXiv:1806.11281 arXiv:1808.10465, arXiv:1809.02097, arXiv:1810.07192
 - + many more in preparation

- Apply **wide ranges of constraints** to a given model
 - Construction of composite likelihoods
 - Efficient scans of multi-dimensional parameter space
 - Consistent treatment of uncertainties and nuisance parameters
- Maximum of **flexibility and modularity** in terms of
 - Fast definition of new data sets and models
 - Plug and play of many popular theory tools* (dynamical adaptation to user's system)
 - Large database of models and observables (+ more to come)
 - Many statistical methods (frequentist & Bayesian)
- **Optimized** for parallel computing & fully open source

* GAMBIT supports backend codes in C/C++, Fortran, Python and Mathematica

Modules

A module provides GAMBIT with a range of capabilities (the ability to calculate a certain quantity)

- **DarkBit** (arXiv:1705.07920) dark matter observables
- **ColliderBit** (arXiv:1705.07919) collider observables (Higgs + SUSY searches from ATLAS, CMS, LEP)
- **FlavBit** (arXiv:1705.07933) flavour physics (g 2, b \rightarrow s γ , B decays)
- **SpecBit** (arXiv:1705.07936) RGE running, masses, mixings, ...
- **DecayBit** (arXiv:1705.07936) decay widths for all relevant particles
- **PrecisionBit** (arXiv:1705.07936) SM likelihoods, electroweak precision tests
- ScannerBit (arXiv:1705.07959) manages statistics, sampling and optimisation
- Coming soon: NeutrinoBit & CosmoBit

Ben Farmer, ALPS2019

GAMBIT

gambit.hepforge.org

How does GAMBIT work?

- User specifies the model, parameter space, observables and scanning technique
- GAMBIT then performs the **dependency resolution**
 - Identification of all functions necessary to calculate requested observables
 - \circ ~ Determination of the required inputs for each function
 - \circ ~ Construction of the optimum order of function evaluation
- A scan then consists of calling all necessary modules and external libraries in the required order for each parameter point

ype: double nction: sigma_SD_p_simp Module: DarkBit capture rate Sun Type: double function: capture_rate_Sun_constant_xse Module: Dark Bit ibration time Si Type: double function: equilibration time Sur Module: DarkBit nulike 1 0 6 init annihilation rate S Type: void Function: nulike_1_0_6_init Module: BackendIniBit Type: double Function: annihilation rate S Module: DarkBit

Global fits of GUT-scale SUSY models with	arXiv: 1705.07935
The GAMBIT Collaboration: Peter Athron ^{1,2,a} , Csaba Balázs ^{1,2} , Tor Bringmann ³ , Andy Buckley ⁴ , Marcin Chrząszcz ^{5,6} , Jan Conrad ^{7,8} ,	EPJC 77 (2017) no.12, 824
Jonathan M. Cornell ⁹ , Lars A. Dal ³ , Joakim Edsjö ^{7,8} , Ben Farmer ^{7,8}	^{8,b}
Mahmoudi ^{12,13,*} , Gregory D. Martinez ¹⁴ , Antje Putze ¹⁵ , Are Rakley Christopher Rogan ¹⁶ , Roberto Ruiz de Austri ¹⁷ , Aldo Saavedra ^{18,2} , Christopher Savage ¹¹ , Pat Scott ^{19,d} , Nicola Serra ⁵ , Christoph Wenig	A global fit of the MSSM with GAMBIT
Martin White ^{10,2,e}	The GAMBIT Collaboration: Peter Athron ^{1,2,a} , Csaba Balázs ^{1,2} , Torsten
	Bringmann ³ , Andy Buckley ⁴ , Marcin Chrząszcz ^{5,6} , Jan Conrad ^{7,8} ,
arXiv: 1809.02097	Jonathan M. Cornell ⁹ , Lars A. Dal ³ , Joakim Edsjö ^{7,8} , Ben Farmer ^{7,8} , Paul Jackson ^{10,2} , Abram Krislock ³ , Anders Kvellestad ^{11,b} , Farvah
EPIC 77 (2017) no.12, 879	Mahmoudi ^{12,13,*} , Gregory D. Martinez ¹⁴ , Antje Putze ¹⁵ , Are Raklev ³ ,
, , , , , , , , , ,	Christopher Rogan ¹⁰ , Aldo Saavedra ^{17,2} , Christopher Savage ¹¹ , Pat
	Scott ^{10,0} , Nicola Serra ^o , Christoph weniger ¹⁰ , Martin white ^{10,2,4}

Combined collider constraints on neutralinos and charginos

The GAMBIT Collaboration: Peter Athron^{1,2}, Csaba Balázs^{1,2}, Andy Buckley³, Jonathan M. Cornell⁴, Matthias Danninger⁵, Ben Farmer⁶, Andrew Fowlie^{1,2,9}, Tomás E. Gonzalo¹⁰, Julia Harz¹¹, Paul Jackson^{2,12}, Rose Kudzman-Blais⁵, Anders Kvellestad^{6,10,a}, Gregory D. Martinez¹³, Andreas Petridis^{2,12}, Are Raklev¹⁰, Christopher Rogan¹⁴, Pat Scott⁶, Abhishek Sharma^{2,12}, Martin White^{2,12,b}, Yang Zhang^{1,2} arXiv: 1809.02097 Accepted at EPJC, 3 April 2019

16

Ben Farmer, ALPS2019

- ATLAS Higgsino search: ATLAS_4b
- · ATLAS ≥4 lepton search: ATLAS_4lep
- ATLAS multilepton EW search: ATLAS_MultiLep_* (2lep_0jet, 2lep_jet, 3lep)
- ATLAS recursive jigsaw EW search: ATLAS_RJ_* (2lep_2jet, 3lep)
- · CMS Wh search: CMS_1lep_2b
- CMS 2 soft opposite-sign lepton search: CMS_2lep_soft (including SR correlations)
- CMS 2 opposite-sign lepton search: CMS_2OSlep (including SR correlations)
- CMS multilepton EW search: CMS_MultiLep_* (2SSIep, 3Iep)

Slide credit: Anders Kvellestad

13 TeV, 36 fb-1

Included likelihoods

• Z and Higgs invisible decays

• LEP cross-section limits

• 13 TeV searches for EW SUSY

 $\Gamma(Z \to \text{inv.}) = 499.0 \pm 1.5 \text{ MeV}$ BF $(h \to \text{inv.}) \le 0.19$

Production	Signature	Experiment	
$ ilde{\chi}^0_i ilde{\chi}^0_1$	$\tilde{\chi}_i^0 \to q \bar{q} \tilde{\chi}_1^0$	OPAL [53]	
(i = 2, 3, 4)	$\tilde{\chi}_i^0 \to \ell \ell \tilde{\chi}_1^0$	L3 [98]	
$\tilde{\chi}_i^+ \tilde{\chi}_i^-$	$\tilde{\chi}_i^+ \tilde{\chi}_i^- \to q\bar{q}$	$\bar{q}' q \bar{q}' \tilde{\chi}_1^0 \tilde{\chi}_1^0$ OPAL [53]	
(i = 1, 2)	$\tilde{\chi}_i^+ \tilde{\chi}_i^- \to q\bar{q}$	$\tilde{\eta}' \ell \nu \tilde{\chi}_1^0 \tilde{\chi}_1^0$ OPAL [53]	
	$\tilde{\chi}_i^+ \tilde{\chi}_i^- \to \ell \nu$	$\nu \ell \nu \tilde{\chi}_1^0 \tilde{\chi}_1^0$ OPAL [53], L3 [98]	
	$ISR \gamma + mi$	issing energy OPAL [99]	
Likelihood label	l	Source	
ATLAS_4b		ATLAS Higgsino search [104]	
ATLAS_4lep		ATLAS 4ℓ search [105]	
ATLAS_MultiLe	p_2lep_0jet	ATLAS multilepton EW search [100]	
ATLAS_MultiLe	p_2lep_jet	ATLAS multilepton EW search [100]	
ATLAS_MultiLe	p_3lep	ATLAS multilepton EW search [100]	
ATLAS_RJ_2le	o_2jet	ATLAS recursive jigsaw EW search [101]	
ATLAS_RJ_3le	o	ATLAS recursive jigsaw EW search [101]	
CMS_1lep_2b		CMS Wh search [106]	
CMS_2lep_soft		CMS 2 soft opposite-charge lepton search [109]
CMS_20Slep		CMS 2 opposite-charge lepton search $[110]$	
CMS_MultiLep_	_2SSIep	CMS multilepton EW search $[111]$	
CMS_MultiLep_	_3lep	CMS multilepton EW search [111]	

Joint likelihood

$$L(\mu) = \prod_{i} L_i(\mu)$$

- Different analyses assumed to be statistically independent
 - (no search region event overlap)
 - Also assumed signal regions with different final states to be independent
- CMS simplified likelihoods used where available
 - ...but when they aren't, "Best expected" signal region is used*
 - --> reduced exclusion power but not much choice without correlation information.

$$\begin{split} \mathcal{L}(\boldsymbol{s},\boldsymbol{\gamma}) &= \prod_{i}^{N_{\text{bin}}} \left[\frac{(s_i + b_i + \gamma_i)^{n_i} e^{-(s_i + b_i + \gamma_i)}}{n_i!} \right] \\ &\times \frac{1}{\sqrt{\det 2\pi \Sigma}} e^{-\frac{1}{2} \boldsymbol{\gamma}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}} \,. \end{split}$$

*for p-value tests of best fit point we also combined all signal regions as if they were independent, to check potential impact of un-chosen signal regions.

Results

- Full profile likelihood
- All electroweakinos preferred light
- Prefers scenarios with two large steps ≥ m_z in neutralino mass hierarchy

									21
_			Best e	xpected SRs		All S	SRs; negle	ect correlation	s
Results	Analysis	Local signif. (σ)	$\begin{array}{c} \text{SM} \\ \text{fit} (\sigma) \end{array}$	EWMSSM fit (σ)	#SRs	Local signif. (σ)	$\begin{array}{c} \text{SM} \\ \text{fit} \ (\sigma) \end{array}$	EWMSSM fit (σ)	#SRs
Local significance tests	Higgs invisible width	0	0	0	1	0	0	0	1
Local significance tests	Z invisible width	0	1.3	1.3	1	0	1.3	1.3	1
	ATLAS_4b	0.7	0	0	1	1.5	0	0	2^{*}
+	ATLAS_4lep	2.3	1.9	0	1	2.5	1.0	0	4
	ATLAS_MultiLep_2lep_0j	et 0.9	0.3	0.1	1	1.3	0	0	6
"Goodness of fit" tests	ATLAS_MultiLep_2lep_je	t 0	0	0.5	1	0.8	0.5	0.2	3
	ATLAS_MultiLep_3lep	1.8	1.5	0.7	1	1.2	0.4	0.3	11
	ATLAS_RJ_2lep_2jet	0	0.3	0.5	1	1.5	1.8	1.5	4
	ATLAS_RJ_3lep	2.7	2.5	1.1	1	3.4	2.5	0.7	4
	CMS_1lep_2b	0.8	0.3	0.3	1	0	0	0	2
	CMS_2lep_soft	0.1	0.2	0.2	12	0.1	0.2	0.2	12
	CMS_20Slep	0.1	0.5	0.5	7	0	0.4	0.5	7
	CMS_MultiLep_2SSlep	0.2	0	0	1	0.2	0	0	2
	CMS_MultiLep_3lep	0	0	0.4	1	0	0	0	6
	Combined	3.3	1.4	0.2	31	4.1	1.2	0	65

- Est. local significance ~ 3.3σ (reduced to ~ 2.9σ with 8 TeV analyses)
- **Optimistic summary**: Early hint of signal in multilepton final states? (not necessarily SUSY/MSSM)
- Cool-headed summary: Very light electroweakinos still allowed in MSSM
- Need to go **beyond simplified models** with one-step decay chains
- Look forward to updates on ATLAS/CMS multilepton searches!

Results

A few caveats:

- Only L0+LL cross-sections
 - Why? Speed.
- For most analyses can only use one SR per point
 - *Why?* Missing correlation information
- Too weak constraints from CMS multilepton search
 - *Why?* Too many SRs had to use aggregated SRs
 - CMS have recently provided covariance information thanks!

Ben Farmer, ALPS2019

Predictions for full Run 2 data!

ATLAS and CMS now have ~140 fb⁻¹ of data on disk.

What can we expect under the assumption that our EWMSSM BF point is True?

-> Simple scaling of 36 fb⁻¹ 13 TeV analyses. Take with a grain of salt.

			Best e	xpected SRs		All S	SRs; negle	ect correlations	s 24
Predictions for full	Analysis	Local signif. (σ)	$\begin{array}{c} \mathrm{SM} \\ \mathrm{fit} \ (\sigma) \end{array}$	$\begin{array}{c} \text{EWMSSM} \\ \text{fit} \ (\sigma) \end{array}$	#SRs	$\begin{vmatrix} \text{Local} \\ \text{signif.} (\sigma) \end{vmatrix}$	$\begin{array}{c} \text{SM} \\ \text{fit} \ (\sigma) \end{array}$	$\begin{array}{c} \text{EWMSSM} \\ \text{fit} \ (\sigma) \end{array}$	#SRs
Run 2 data!	Higgs invisible width	0	0	0	1	0	0	0	1
	Z invisible width	0	1.3	1.3	1	0	1.3	1.3	1
	ATLAS_4b	0.7	0	0	1	1.5	0	0	2^*
	ATLAS_4lep	2.3	1.9	0	1	2.5	1.0	0	4
1	ATLAS_MultiLep_2lep_	0jet 0.9	0.3	0.1	1	1.3	0	0	6
$26 f_{0}^{-1}$	ATLAS_MultiLep_2lep_	jet 0	0	0.5	1	0.8	0.5	0.2	3
0100	ATLAS_MultiLep_3lep	1.8	1.5	0.7	1	1.2	0.4	0.3	11
	ATLAS_RJ_2lep_2jet	0	0.3	0.5	1	1.5	1.8	1.5	4
	ATLAS_RJ_3lep	2.7	2.5	1.1	1	3.4	2.5	0.7	4
	CMS_1lep_2b	0.8	0.3	0.3	1	0	0	0	2
	CMS_2lep_soft	0.1	0.2	0.2	12	0.1	0.2	0.2	12
	CMS_20Slep	0.1	0.5	0.5	7	0	0.4	0.5	7
	CMS_MultiLep_2SSlep	0.2	0	0	1	0.2	0	0	2
	CMS_MultiLep_3lep	0	0	0.4	1	0	0	0	6
	Combined	3.3	1.4	0.2	31	4.1	1.2	0	65
Scaled to		Taral	CM	EWMCCM		[1	CM	EWINGON	
	Analysis	signif. (σ)	fit (σ)	fit (σ)	# SRs	signif. (σ)	fit (σ)	fit (σ)	# SRs
	ATLAS 4b	0	0	0	1		0	0	2
	ATLAS 4lep	3.3	3.1	0	1	3.9	2.6	0	4
	ATLAS MultiLep 2lep	0jet 0.4	0	0	1	0.4	0	0	6
	ATLAS_MultiLep_2lep_	jet 2.0	1.7	0	1	2.2	0.9	0	3
	ATLAS_MultiLep_3lep	2.0	1.7	0	1	3.8	0.8	0	11
Y	ATLAS_RJ_2lep_2jet	1.6	1.2	0	1	1.6	0	0	4
1 + 0 = -1	ATLAS_RJ_3lep	2.8	2.6	0	1	3.6	2.2	0	4
1/10 th t	CMS_1lep_2b	0	0	0	1	0	0	0	2
14010	CMS_2lep_soft	0.1	0	0	12	0.1	0	0	12
	CMS_2OSlep	1.6	0	0	7	1.6	0	0	7
	CMS_MultiLep_2SSlep	0.7	0	0	1	0.9	0	0	2
	CMS_MultiLep_3lep	2.2	1.9	0	1	2.8	0.7	0	6
Ben Farmer, ALPS2019	Combined	6.1	1.1	0	29	7.8	0	0	63

Summary

- We have performed a large global fit of the MSSM electroweak sector using GAMBIT
- Light neutralinos and charginos still allowed in MSSM
- No necessary tension between ATLAS RJ and conventional multilepton searches
- Combined LHC results prefer scenarios with **all neutralinos and charginos below** ~500 GeV
- Predicts **multi-W/Z/h** final states
- Subset of best-fit regions compatible with dark matter results
- Interesting times for EW SUSY searches!

	Parameter	#1 Best fit	#2 Heavy winos	#3 Highest mass	#4 DM
	$M_1(Q)$	$-50.6\mathrm{GeV}$	$-79.2{ m GeV}$	$133.4\mathrm{GeV}$	$-45.6\mathrm{GeV}$
	$M_2(Q)$	$149.3{ m GeV}$	$263.0{ m GeV}$	$243.5\mathrm{GeV}$	$143.7{ m GeV}$
	$\mu(Q)$	$252.7{ m GeV}$	$-187.3{\rm GeV}$	$-293.2{ m GeV}$	$260.8{ m GeV}$
ts	$ aneta(m_Z)$	28.7	40.4	41.5	16.4
	$m_{ ilde{\chi}^0_1}$	$-49.4\mathrm{GeV}$	$-73.9{ m GeV}$	$129.4{ m GeV}$	$-45.1\mathrm{GeV}$
	$m_{ ilde{\chi}_2^0}$	$141.6{\rm GeV}$	$165.7{ m GeV}$	$230.6\mathrm{GeV}$	$136.5{ m GeV}$
	$m_{ ilde{\chi}_2^0}$	$-270.3{\rm GeV}$	$-208.5{\rm GeV}$	$-308.8{\rm GeV}$	$-277.8{\rm GeV}$
	$m_{ ilde{\chi}^0_4}$	$290.2{\rm GeV}$	$292.6{ m GeV}$	$344.6\mathrm{GeV}$	$297.2\mathrm{GeV}$
	$m_{ ilde{\chi}^{\pm}}$	$142.1\mathrm{GeV}$	$168.7{ m GeV}$	$230.2{ m GeV}$	$136.8\mathrm{GeV}$
	$m_{ ilde{\chi}_2^\pm}$	$293.9{\rm GeV}$	$294.2{\rm GeV}$	$345.8{\rm GeV}$	$300.5{ m GeV}$
	Collider log-likelihood	10.8	10.3	9.7	10.4

Benchmark points

Ben Farmer, ALPS2019

All results are publically available

- Results available on zenodo.cern.ch
 - Parameter point samples and signal Ο predictions (hdf5 files)
 - GAMBIT input files for all scans Ο
 - SLHA files for benchmark points 0
- Links at gambit.hepforge.org/pubs

Ben Farmer, ALPS2019

The community curator is notified and will.

Backup slides

Bonus result: dark matter

- · Scan did not include DM constraints
- LHC likelihood prefers light bino LSP (with non-zero higgsino component)
- Z/Higgs resonances can give acceptable relic density
- We post-process all samples with DM likelihoods: relic density, direct detection and indirect detection

- Subset of our «collider-only» best-fit region also gives acceptable relic density and avoids DD and ID constraints.
- Part of best-fit region accessible to next generation of DD experiments
- This is only a rough check: A dedicated scan with both collider and DM likelihoods is needed for complete picture

EW SUSY results with ~140 fb⁻¹ starting to appear: **ATLAS search for production of chargino pairs**

p

W

 $\tilde{\chi}_1^{\pm}$

Analysis: scan and post-processing

Parameter	Minimum	Maximum	Priors
$M_1(Q)$	$-2\mathrm{TeV}$	$2\mathrm{TeV}$	hybrid, flat
$M_2(Q)$	$0 \mathrm{TeV}$	$2\mathrm{TeV}$	hybrid, flat
$\mu(Q)$	$-2\mathrm{TeV}$	$2{ m TeV}$	hybrid, flat
$ an \beta(m_Z)$	1	70	flat
Q	3	TeV	fixed
$\alpha_s^{\overline{MS}}(m_Z)$	0.	1181	fixed
Top quark pole mass	171.0	$06{ m GeV}$	fixed

Scans

- Diver (differential evolution)
- 100k/500k Pythia events per point for LHC simulations
- ~2.4M parameter point samples (large uncertainty in LHC likelihood)

Post-processing

- · Re-run points in preferred parameter regions with higher MC statistics
- $2\sigma/3\sigma$ regions: $\geq 4M$ events, 1σ region: $\geq 16M$ events, 500 best points: 64M events $\tilde{}_{6}$

~3 hours per point, using 68 CPUs x4 hyperthreading

· ~240k parameter point samples

Analysis: impact of 8 TeV searches

Post-processed all samples within the 1-sigma preferred region from 13 TeV.

Included 8 TeV analyses:

- ATLAS 2 lepton search
- ATLAS 3 lepton search
- ATLAS Wh search (1lep + 2b)
- CMS 3 lepton search
- CMS 4 lepton search

Bino < higgsinos < winos generally less constrained than bino < winos < higgsinos

ColliderBit: overview

- The collider physics module of GAMBIT
- **LEP limits (SUSY):** Calculate $\sigma \times BR$ and check against published limits
- LHC particle searches: Full Poisson likelihood from fast MC simulation of LHC searches
 - Parallellized MC event generation and analysis loop inside ColliderBit
 - Event generation with Pythia 8
 - Fast detector simulator: BuckFast (4-vector smearing)
- Focus on speed, as required for use in global fits

Analysis: best-fit point distributions

ATLAS_RJ_3lep

ATLAS_RJ_2lep_2jet

 H_{41}^{pp} (GeV)

ColliderBit: validation

ColliderBit: validation

Cut	ATLAS	GAMBIT	Ratio
All events	14028	14028	1.00
Trigger, 4 jets $(p_T > 40 \text{ GeV}, 2 \text{ b-tags})$	1455	1906	1.31
$\geq 4 b$ -tags	163.0	161.0	0.99
≥ 2 Higgses	126.4	140.8	1.11
Lepton veto	126.1	140.3	1.11
$X_{Wt} > 1.8$	108.4	132.8	1.23
$X_{hh}^{SR} < 1.6$	53.4	52.47	0.98
SR1: $m_{\text{meff}} > 440 \text{ GeV}$	37.0	43.58	1.18
$\begin{array}{l} {\rm SR2:} \ m_{\rm meff} > 440 {\rm GeV} \ + \\ E_T^{\rm miss} > 150 {\rm GeV} \end{array}$	14.2	16.27	1.15

Table 4: Example comparison of GAMBIT and ATLAS [120] cutflows for two signal regions targeting low-mass Higgsinos in a search for new physics in events with two Higgs bosons decaying into $\bar{b}b$. Shown are the numbers of events expected in 24.3 fb⁻¹ of 13 TeV ATLAS data for Higgsino pair production with a signal cross-section of 0.577 pb, $m_{\tilde{H}} = 250$ GeV and a massless gravitino, assuming 100% branching fraction for $\tilde{H} \rightarrow h\tilde{G}$.

Cut	CMS	GAMBIT	Ratio
All events	172000	172000	1.00
2 reconstructed muons with $5 < p_T < 30 \text{ GeV}$	1250	1212	0.97
muons oppositely charged	1200	1099	0.91
$p_T(\mu\mu) > 3 \mathrm{GeV}$	1176	1067	0.97
$M(\mu\mu) \in [4, 50]$ GeV	1095	1062	1.02
$M(\mu\mu) \in [9, 10.5]$ GeV veto	988.5	1011	0.99
$125 < p_T^{miss} < 200 \text{ GeV}$	46.8	46.4	0.98
Trigger efficiency	30.7	30.2	1.07
ISR jet	27.9	29.9	1.17
$H_T > 100 \text{GeV}$	23.6	27.7	1.40
$0.6 < p_T^{\text{miss}} / H_T < 1.4$	17.2	24.0	1.42
b-tag veto	14.0	19.8	1.25
$M(\tau\tau)$ veto	12.3	15.4	1.25
$M_T(\mu_x, p_T^{\text{miss}}) < 70 \text{GeV}$	9.3	10.3	1.11

Table 5: Comparison of the GAMBIT and CMS [125] cutflows for a WZ signal model $(m_{\tilde{\chi}_1^\pm} = 150 \,\mathrm{GeV}, m_{\tilde{\chi}_1^0} = 130 \,\mathrm{GeV})$ in a search for new physics in events with two low-momentum opposite-sign leptons and missing transverse momentum. Shown are the numbers of events expected in $33.2 \,\mathrm{fb}^{-1}$ of 13 TeV CMS data for a signal cross-section of 5.18 pb [129]. Both the CMS cutflow and GAMBIT cutflow are generated for production of $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ in a simplified model with decays via off-shell W/Z.

Cut	CMS	GAMBIT	Ratio
All events	109.35	1084.18	9.91
2 SFOS leptons	24.21	30.00	1.24
Extra lepton vetoes	18.37	25.07	1.36
$m_{\ell\ell} \in [86, 96] \text{GeV}$	14.13	15.97	1.13
2-3 Jets	11.98	9.83	0.82
$\Delta \Phi(E_T^{\text{miss}}, j_{1,2}) > 0.4$	10.95	9.07	0.83
B-tag veto	9.92	8.86	0.89
$M_{T2}(\ell \ell) > 80 \text{GeV}$	8.04	7.27	0.90
$M_{\ell\ell} < 150 \text{GeV}$	5.62	5.26	0.94
SR1: $E_T^{\text{miss}} > 100 \text{ GeV}$	5.41	5.05	0.93
SR2: $E_T^{\text{miss}} > 150 \text{ GeV}$	4.96	4.76	0.96
SR3: $E_T^{\text{miss}} > 250 \text{ GeV}$	3.59	3.49	0.97
SR4: $E_T^{\text{miss}} > 350 \text{ GeV}$	1.94	1.95	0.96

Table 6: Comparison of the GAMBIT and published CMS cutflows [126] in four signal regions of a search for new physics in events with two opposite-charge same-flavor leptons and missing transverse momentum, for a WZ signal model ($m_{\tilde{\chi}_1^{\pm}} = 550 \text{ GeV}, m_{\tilde{\chi}_1^0} = 200 \text{ GeV}$). Shown are the numbers of events expected in 35.9 fb^{-1} of 13 TeV CMS data, and the ratio of the GAMBIT and CMS numbers. Note that the CMS cutflow is generated for a $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ simplified model decaying via W/Z where the Z boson decays leptonically, while the GAMBIT cutflow is generated without specifying Z boson decay mode. This explains the discrepancy at the "All events" cut.

Analysis: profile likelihood maps

Naive *«light SUSY is dead»* expectation:

- First: «capped» LHC likelihood
- How much worse does a point in the MSSM fit the data compared to the SM?
- Capping done on combined likelihood for all analyses
- If **profile likelihood ratio = 1**: found a point with *either*
 - no sensitivity; or
 - · all bad fits offset by other good fits
- No general constraint on the lightest EWinos

$$\mathcal{L}_{ ext{cap}} = \min[\mathcal{L}_{ ext{LHC}}(s+b), \mathcal{L}_{ ext{LHC}}(b)]$$

Interpretation: For every point in the mass plane, there is *at least one point* in the MSSM parameter space that fits the data as well as (or better than) the SM expectation.

This does not tell us anything about the size of the viable parameter space...

• **Contribution from each analysis** to the 1σ, 2σ and 3σ best-fit regions

 $\ln \mathcal{L}(s+b) - \ln \mathcal{L}(b)$

- Blue: better than background-only Red: worse than background-only
- Most important contributions to best-fit region:
 - · ATLAS_4lep

٠

- · ATLAS_RJ_3lep
- · ATLAS_MultiLep_2lep_jet
- · ATLAS_MultiLep_3lep
- · CMS_MultiLep_3lep

- More detailed look on
 - · ATLAS_4lep
 - · ATLAS_RJ_3lep
 - · ATLAS_MultiLep_2lep_jet
 - ATLAS_MultiLep_3lep
- Sudden changes in likelihood due to changes in most sensitive SR
- Light $\tilde{\chi}^0_3$ preferred by ATLAS_4lep and ATLAS_MultiLep_3Lep
- Heavy $\tilde{\chi}_4^0$ disfavoured by ATLAS_MultiLep_2lep_jet and ATLAS_MultiLep_3Lep

•

The «expected» tension between **ATLAS_MultiLep_3Lep** and **ATLAS_RJ_3lep** observed for heavy $\tilde{\chi}_4^0$ (production of higgsino $\tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_1^{\pm}$)

 $-\tilde{\chi}_2^0 \tilde{\chi}_3^0$ production, with e.g.

 $-\tilde{\chi}_2^{\pm}\tilde{\chi}_2^{\mp}$ production, with e.g.

 $-\tilde{\chi}_2^{\pm}\tilde{\chi}_3^0$ production, with e.g.

 $-\tilde{\chi}_2^{\pm}\tilde{\chi}_3^0$ production, with e.g.

- More detailed look on •
 - · ATLAS 4lep
 - · ATLAS RJ 3lep

The «expected» tension between 600 ATLAS_RJ_3len ATLAS_RJ_3len ATLAS MultiLep 3Lep and 1500 $m_{\tilde{\chi}^0_1}~({\rm GeV})$ **ATLAS_RJ_3lep** observed for heavy $\tilde{\chi}_4^0$ (production of higgsino $\tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_1^{\pm}$) 1000 1000 200 400 600 500 1000 0 200 400 600 0 0 $m_{\tilde{\chi}_1^+}$ (GeV) $m_{\tilde{\chi}^0_2}$ (GeV) $m_{\tilde{\chi}^0_{\pm}}$ (GeV)

. . .

- · ATLAS Higgsino search: ATLAS_4b
- · ATLAS ≥4 lepton search: ATLAS_4lep
- ATLAS multilepton EW search: ATLAS_MultiLep_* (2lep_0jet, 2lep_jet, 3lep)
- ATLAS recursive jigsaw EW search: ATLAS_RJ_* (2lep_2jet, 3lep)
- · CMS Wh search: CMS_1lep_2b
- · CMS 2 soft opposite-sign lepton search: CMS_2lep_soft (including SR correlations)
- · CMS 2 opposite-sign lepton search: CMS_2OSlep (including SR correlations)
- CMS multilepton EW search: CMS_MultiLep_* (2SSIep, 3Iep)

- · ATLAS Higgsino search: ATLAS_4b
- · ATLAS ≥4 lepton search: ATLAS_4lep
- ATLAS multilepton EW search: ATLAS_MultiLep_* (2lep_0jet, 2lep_jet, 3lep)
- ATLAS recursive jigsaw EW search: ATLAS_RJ_* (2lep_2jet, 3lep)
- · CMS Wh search: CMS_1lep_2b
- · CMS 2 soft opposite-sign lepton search: CMS_2lep_soft (including SR correlations)
- CMS 2 opposite-sign lepton search: CMS_2OSlep (including SR correlations)
- CMS multilepton EW search: CMS_MultiLep_* (2SSIep, 3Iep)

13 TeV, 36 fb-1

46

- · ATLAS Higgsino search: ATLAS_4b
- · ATLAS ≥4 lepton search: ATLAS_4lep
- · ATLAS multilepton EW search: ATLAS_MultiLep_* (2lep_0jet, 2lep_jet, 3lep)
- ATLAS recursive jigsaw EW search: ATLAS_RJ_* (2lep_2jet, 3lep)
- · CMS Wh search: CMS_1lep_2b
- CMS 2 soft opposite-sign lepton search: CMS_2lep_soft (including SR correlations)
- CMS 2 opposite-sign lepton search: CMS_2OSlep (including SR correlations)
- CMS multilepton EW search: CMS_MultiLep_* (2SSIep, 3Iep)

13 TeV, 36 fb⁻¹

- · ATLAS Higgsino search: ATLAS_4b
- · ATLAS ≥4 lepton search: ATLAS_4lep
- ATLAS multilepton EW search: ATLAS_MultiLep_* (2lep_0jet, 2lep_jet, 3lep)
- ATLAS recursive jigsaw EW search: ATLAS_RJ_* (2lep_2jet, 3lep)
- CMS Wh search: CMS_1lep_2b
- · CMS 2 soft opposite-sign lepton search: CMS_2lep_soft (including SR correlations)
- · CMS 2 opposite-sign lepton search: CMS_2OSIep (including SR correlations)
- CMS multilepton EW search: CMS_MultiLep_* (2SSIep, 3Iep)

13 TeV, 36 fb⁻¹

- ATLAS Higgsino search: ATLAS_4b
- ATLAS ≥4 lepton search: ATLAS_4lep
- ATLAS multilepton EW search: ATLAS_MultiLep_* (2lep_0jet, 2lep_jet, 3lep)
- ATLAS recursive jigsaw EW search: ATLAS_RJ_* (2lep_2jet, 3lep) •
- CMS Wh search: CMS_1lep_2b ٠
- CMS 2 soft opposite-sign lepton search: CMS_2lep_soft (including SR correlations) ٠
- CMS 2 opposite-sign lepton search: CMS_2OSlep (including SR correlations) .
- CMS multilepton EW search: CMS_MultiLep_* (2SSIep, 3Iep) ٠

35.9 fb⁻¹ (13 TeV)

400

500

σ [pb]

upper limit on c

لع¹⁰ ¹⁰

95%

- · ATLAS Higgsino search: ATLAS_4b
- · ATLAS ≥4 lepton search: ATLAS_4lep
- ATLAS multilepton EW search: ATLAS_MultiLep_* (2lep_0jet, 2lep_jet, 3lep)
- ATLAS recursive jigsaw EW search: ATLAS_RJ_* (2lep_2jet, 3lep)
- · CMS Wh search: CMS_1lep_2b
- · CMS 2 soft opposite-sign lepton search: CMS_2lep_soft (including SR correlations)
- CMS 2 opposite-sign lepton search: CMS_2OSlep (including SR correlations)
- CMS multilepton EW search: CMS_MultiLep_* (2SSIep, 3Iep)

13 TeV, 36 fb⁻¹

- · ATLAS Higgsino search: ATLAS_4b
- · ATLAS ≥4 lepton search: ATLAS_4lep
- ATLAS multilepton EW search: ATLAS_MultiLep_* (2lep_0jet, 2lep_jet, 3lep)
- ATLAS recursive jigsaw EW search: ATLAS_RJ_* (2lep_2jet, 3lep)
- · CMS Wh search: CMS_1lep_2b
- · CMS 2 soft opposite-sign lepton search: CMS_2lep_soft (including SR correlations)
- · CMS 2 opposite-sign lepton search: CMS_2OSlep (including SR correlations)
- CMS multilepton EW search: CMS_MultiLep_* (2SSIep, 3Iep)

13 TeV, 36 fb-1

- ATLAS Higgsino search: ATLAS_4b
- · ATLAS ≥4 lepton search: ATLAS_4lep
- ATLAS multilepton EW search: ATLAS_MultiLep_* (2lep_0jet, 2lep_jet, 3lep)
- ATLAS recursive jigsaw EW search: ATLAS_RJ_* (2lep_2jet, 3lep)
- · CMS Wh search: CMS_1lep_2b
- · CMS 2 soft opposite-sign lepton search: CMS_2lep_soft (including SR correlations)
- CMS 2 opposite-sign lepton search: CMS_2OSlep (including SR correlations)
- CMS multilepton EW search: CMS_MultiLep_* (2SSIep, 3lep)

13 TeV, 36 fb⁻¹

Local p-values

$$q = -2\ln\frac{L_{s+b}}{L_b}, \qquad \lambda_i = \mu s_i(\phi) + b_i + \theta_i$$
$$q = -2\ln\frac{L(\mu = 1, \hat{\hat{\theta}}(1))}{L(\mu = 0, \hat{\hat{\theta}}(0))}$$

Note: this is where combination comes in! Same whether combining signal regions or whole analyses:

$$L(\mu) = \prod_i L_i(\mu)$$

Figure 6: The distribution of the statistic $q = -2 \ln(L_{s+b}/L_b)$ under the hypotheses of $\mu = 0$ and $\mu = 1$ (see text).

*Note: for simple vs simple hypothesis testing, the likelihood ratio gives the best discrimination (power, Neyman-Pearson Lemma)

Local	p-va	lues
-------	------	------

Analysis	Local			
S	signif. (σ)			
Higgs invisible width	0			
Z invisible width	0			
ATLAS_4b	0.7			
ATLAS_4lep	2.3			
ATLAS_MultiLep_2lep_0je	t 0.9			
ATLAS_MultiLep_2lep_jet	0			
ATLAS_MultiLep_3lep	1.8			
ATLAS_RJ_2lep_2jet	0			
ATLAS_RJ_3lep	2.7			
CMS_1lep_2b	0.8			
CMS_2lep_soft	0.1			
CMS_2OSlep	0.1			
CMS_MultiLep_2SSlep	0.2			
CMS_MultiLep_3lep	0			
Combined	3.3			

Goodness of fit

$$q_{\text{GOF}} = -2\log\frac{\mathcal{L}_{\text{joint}}(\mathbf{s}(\theta), \hat{\eta})}{\mathcal{L}_{\text{joint}}(\hat{\hat{\mathbf{s}}}, \hat{\hat{\eta}})}$$

Asymptotic distribution is chi-squared with DOF=#SR

(to test background-only hypothesis, set $s(\theta)=0$)

No look-elsewhere effect*, but test is not very powerful for discovery due to large DOF.

Goodness of fit

	Best expected SRs			All SRs; neglect correlations 56				
Analysis	$\begin{array}{c} \text{Local} \\ \text{signif.} (\sigma) \end{array}$	$\begin{array}{c} \mathrm{SM} \\ \mathrm{fit} \ (\sigma) \end{array}$	$\begin{array}{c} \text{EWMSSM} \\ \text{fit} \ (\sigma) \end{array}$	#SRs	$\begin{vmatrix} \text{Local} \\ \text{signif.} (\sigma) \end{vmatrix}$	$\begin{array}{c} \mathrm{SM} \\ \mathrm{fit} \ (\sigma) \end{array}$	$\begin{array}{c} \text{EWMSSM} \\ \text{fit} \ (\sigma) \end{array}$	#SRs
Higgs invisible width	0	0	0	1	0	0	0	1
Z invisible width	0	1.3	1.3	1	0	1.3	1.3	1
ATLAS_4b	0.7	0	0	1	1.5	0	0	2^*
ATLAS_4lep	2.3	1.9	0	1	2.5	1.0	0	4
ATLAS_MultiLep_2lep_0	jet 0.9	0.3	0.1	1	1.3	0	0	6
ATLAS_MultiLep_2lep_je	et 0	0	0.5	1	0.8	0.5	0.2	3
ATLAS_MultiLep_3lep	1.8	1.5	0.7	1	1.2	0.4	0.3	11
ATLAS_RJ_2lep_2jet	0	0.3	0.5	1	1.5	1.8	1.5	4
ATLAS_RJ_3lep	2.7	2.5	1.1	1	3.4	2.5	0.7	4
CMS_1lep_2b	0.8	0.3	0.3	1	0	0	0	2
CMS_2lep_soft	0.1	0.2	0.2	12	0.1	0.2	0.2	12
CMS_20Slep	0.1	0.5	0.5	7	0	0.4	0.5	7
CMS_MultiLep_2SSlep	0.2	0	0	1	0.2	0	0	2
CMS_MultiLep_3lep	0	0	0.4	1	0	0	0	6
Combined	3.3	1.4	0.2	31	4.1	1.2	0	65

25

